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We analyze the Kitaev model on the triangle-honeycomb lattice whose ground state has recently been shown
to be a chiral spin liquid. We consider two perturbative expansions: the isolated-dimer limit containing Abelian
anyons and the isolated-triangle limit. In the former case, we derive the low-energy effective theory and discuss
the role played by multiplaquette interactions. In this phase, we also compute the spin-spin correlation func-
tions for any vortex configuration. In the isolated-triangle limit, we show that the effective theory is, at lowest
nontrivial order, the Kitaev honeycomb model at the isotropic point. We also compute the next-order correction
which opens a gap and yields non-Abelian anyons.
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I. INTRODUCTION

In two dimensions, particles may obey nontrivial braiding
statistics.1,2 However, a direct observation of these so-called
anyons remains one of the most challenging topics in phys-
ics. Several good candidates have emerged in the last years
among which was the fractional quantum Hall effect3 but the
braiding of Laughlin quasiparticles has still not been per-
formed despite recent proposals based on Mach-Zehnder
interferometer.4

Interestingly, at a theoretical level, such exotic excitations
may also arise in spin systems.5,6 A simple example is pro-
vided by the so-called toric code whose elementary excita-
tions are known to behave as semions.6 Nevertheless, this
model is difficult to implement because it is based on four-
spin interactions which are not easily reproduced in experi-
mental setups. A better candidate is undoubtedly the Kitaev
honeycomb model7 which involves only two-spin interac-
tions. Indeed, such a system may be realized experimentally
in optical lattices either with cold atoms8–10 or with polar
molecules.11 Furthermore, in a suitable parameter range, a
perturbative low-energy effective model of the honeycomb
model is the toric code6 extended with multianyon
interactions.12 One must however keep in mind that, in the
honeycomb model, one also has fermionic excitations which
have to be taken into account when braiding anyons.13

The honeycomb model has attracted much attention
recently12,14–16 because it can additionally be solved exactly
via different fermionization methods �Majorana fermions7 or
Jordan-Wigner transformations17�.

One of the most interesting extensions of this model sug-
gested in Kitaev’s seminal paper7 has been proposed by Yao
and Kivelson18 who considered the same kind of model but
on the triangle-honeycomb lattice. Indeed, in the presence of
closed paths with an odd number of sites, the system spon-
taneously breaks the time-reversal symmetry and has two
topologically distinct gapped phases characterized by
Abelian and non-Abelian excitations. In their study, Yao and
Kivelson18 showed that the ground state is a chiral spin liq-
uid associated to an odd Chern number �note that such an

exotic state of matter has also been found in another spin
model19�. Their whole analysis relies on an exact treatment
of the vortex-free sector �see below for details� which allows
them to compute the fermionic gap. However, as in the hon-
eycomb model, although the ground state belongs to this
subspace, the low-energy states are known to lie in other
vortex sectors for a wide range of parameters in the Abelian
phase. In contrast, near the transition point, the fermionic
gap in the vortex-free sector is smaller than the vortex gap.18

The aim of this paper is to analyze this low-energy spectrum
following and extending the procedure developed in Ref. 12
for the honeycomb model.

This paper is organized as follows. In Sec. II, we intro-
duce the Kitaev model on the triangle-honeycomb lattice and
discuss its symmetries. Section III is devoted to the pertur-
bative treatment in the isolated-dimer limit. There, we first
map the spin model onto an effective spin-boson system
which is well suited to our analysis. We show that the low-
energy effective Hamiltonian is related to the toric code on
the honeycomb lattice although, at lowest nontrivial order
�six�, one only has magneticlike operators. This straightfor-
wardly implies that the low-energy excitations are Abelian
anyons with a semionic mutual statistics. We also compute
the two-spin correlation functions for any vortex configura-
tion up to order 6 and check our results for two simple vortex
configurations �vortex free and vortex full� which allow for
nonperturbative calculations. Finally, in Sec. IV, we consider
the isolated-triangle limit; we show that the effective low-
energy Hamiltonian is, at lowest order �one�, exactly the Ki-
taev honeycomb model at the isotropic point. The next-order
correction involves three-spin interactions as well as
triangular-plaquette degrees of freedom. In the vortex-free
sector, this term is exactly the one studied by Kitaev,7 which
opens a gap and gives rise to non-Abelian excitations. Con-
trary to the isolated-dimer limit, one cannot diagonalize the
effective Hamiltonian for arbitrary vortex configurations.
Thus, we focus on the vortex-free sector and compute the
fermionic gap in this limit, which is a check of our perturba-
tive expansion.
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II. MODEL

We consider the Kitaev model on the triangle-honeycomb
lattice obtained by replacing each site of the honeycomb lat-
tice by a triangle and described by the following Hamil-
tonian:

H = − �
�
� �

� links
J��i

�� j
� + �

�� links

J���i
�� j

�� , �1�

where � takes values x, y, or z, and links of type x, y, z or x�,
y�, z� are illustrated in Fig. 1. In the above formula, i and j
are the two sites of the � or �� link and the �i

�’s are the usual
Pauli matrices at site i. Without loss of generality,7 we also
consider ferromagnetic interactions J� ,J�� �0. This lattice
contains six sites per unit cell and two kinds of elementary
plaquettes: triangles and dodecagons. As in the original
Kitaev honeycomb model, H commutes with all plaquette
operators defined as Wp=�i�p�i

out�i�, where out�i� denotes the
outgoing direction at site i with respect to the plaquette p.
Note that with this definition, plaquette operators have real
eigenvalues wp= �1, whereas, with the convention proposed
in Ref. 7, one has wp= � i for odd-loop operators.

As suggested in Ref. 18, in the following, we further set

Jx = Jy = Jz = J, Jx� = Jy� = Jz� = J�, �2�

so that the Hamiltonian H respects the symmetries of the
lattice. It is also time-reversal invariant since it is quadratic
in the spin operators. However, as explained by Kitaev,7 the
presence of closed paths with an odd number of sites �here
due to triangles� breaks this symmetry spontaneously. This
symmetry breaking may be understood by noting that chang-
ing the flux of all triangles, i.e., flipping their Wp’s, does not
change the energy so that each eigenstate is, at least, twofold
degenerate.18

As in the Kitaev honeycomb model,6 the Hamiltonian H
can be mapped onto a free �Majorana� fermion problem
which allows for an exact solution. Thus, in each vortex
sector defined by a configuration of the Wp’s one has a fer-
mionic spectrum. Nevertheless, the low-energy states may be
given by ground states of other vortex sectors and, when the

corresponding flux configurations are not translation invari-
ant, one is led to solve an impuritylike problem. In Ref. 18,
Yao and Kivelson numerically showed that the ground state
of H always lies in the vortex-free sector �wp= +1 for all p�
and supported this analysis by perturbative considerations.20

In the following, we shall see that this is verified in the first
perturbative limit we consider �isolated dimers�, whereas we
did not manage to prove it in the other limit. In addition, in
the isolated-dimer limit described in Sec. III, we compute the
low-energy spectrum for all vortex configurations and give a
perturbative expansion of the anyonic gap.

III. ISOLATED-DIMER LIMIT

A. Mapping onto an effective spin-boson problem

Our goal is to perform a perturbative analysis of the Abe-
lian phase around the isolated-dimer limit J��J. To do so,
we shall use the effective spin-boson mapping introduced in
Ref. 12 but, for convenience, let us first perform the follow-
ing rotations:

�1,i
� ⇒ �̃1,i

C2���, �2,i
� ⇒ �̃2,i

C���, �3,i
� ⇒ �̃3,i

� , �3�

�4,i
� ⇒ �̃4,i

C2���, �5,i
� ⇒ �̃5,i

C���, �6,i
� ⇒ �̃6,i

� , �4�

where C is the cycle operator which maps �x ,y ,z� onto
�y ,z ,x�. Here, each site is encoded by a cell index i and a
position index k=1, . . . ,6 inside the cell as shown in Fig. 1.
Hamiltonian �1� then reads

H = − J�
i

�̃1,i
y �̃2,i

x + �̃2,i
y �̃3,i

x + �̃3,i
y �̃1,i

x

− J�
i

�̃4,i
y �̃5,i

x + �̃5,i
y �̃6,i

x + �̃6,i
y �̃4,i

x

− J��
i

�̃1,i
z �̃4,i−n1

z + �̃2,i
z �̃5,i−n2

z + �̃3,i
z �̃6,i

z . �5�

With this transformation, the interaction term on each dimer
�i , j� displayed in cyan in Fig. 1 is simply �̃i

z�̃ j
z. Denoting �↑ �

��↓ �� as the eigenstate of �̃z with eigenvalue of +1 �−1�, each
cyan dimer can be in four different states,

	�↑↑�, �↓↓�
 with energy − J�,

	�↑↓�, �↓↑�
 with energy + J�. �6�

An alternative description of these four states consists in
interpreting the low-energy �ferromagnetic� states as two ef-
fective spin states without a quasiparticle and the high-
energy �antiferromagnetic� states as two effective spin states
with one quasiparticle. The energy gap between these states
is �=2J� and corresponds to the fermionic gap evoked in
Sec. II. In the following, we set once for all J�=1 /2 or
equivalently �=1. Among the possible mappings we choose
the following:12

FIG. 1. �Color online� A piece of the triangle-honeycomb lattice
which has six sites per unit cell.
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�↑↑� = �⇑0�, �↓↓� = �⇓0�, �↑↓� = �⇑1�, �↓↑� = �⇓1� ,

�7�

where the left �right� spin is the one of the black �white� site
of the dimer and double arrows represent the state of the
effective spin.

Within this framework, each dimer is reduced to a single
site with 4 degrees of freedom �one effective spin 1/2 and a
hardcore boson occupation number �0 or 1��. Considering
that each site �• or �, see Fig. 1� of the triangle-honeycomb
lattice belongs to a cyan dimer, one then has

�̃i,•
x = �i

x�bi
† + bi�, �̃i,�

x = bi
† + bi,

�̃i,•
y = �i

y�bi
† + bi�, �̃i,�

y = i�i
z�bi

† − bi� ,

�̃i,•
z = �i

z, �̃i,�
z = �i

z�1 − 2bi
†bi� , �8�

where �i
�’s are Pauli matrices acting on the effective spin and

bi
† �bi� is the creation �annihilation� operator of a hardcore

boson at site i which obeys

�bi,bj
†� = �ij�1 − 2bi

†bi� . �9�

Hamiltonian �5� then reads

H = −
N

2
+ Q + T0 + T+2 + T−2, �10�

where N is the number of cyan dimers, Q=�ibi
†bi,

T0 = − J�
i

�t1,i
2,i + t2,i

3,i + t3,i
1,i + t1,i+n1

2,i+n2 + t2,i+n2

3,i + t3,i
1,i+n1� + H.c.,

�11�

T+2 = T−2
† = − J�

i
�v1,i

2,i + v2,i
3,i + v3,i

1,i + v1,i+n1

2,i+n2 + v2,i+n2

3,i + v3,i
1,i+n1� ,

�12�

with hopping operators,

t1,i
2,i = b2,i

† b1,i�1,i
y �2,i

x , �13�

t2,i
3,i = b3,i

† b2,i�2,i
y �3,i

x , �14�

t3,i
1,i = b1,i

† b3,i�3,i
y �1,i

x , �15�

t1,i+n1

2,i+n2 = − ib2,i+n2

† b1,i+n1
�1,i+n1

z , �16�

t2,i+n2

3,i = − ib3,i
† b2,i+n2

�2,i+n2

z , �17�

t3,i
1,i+n1 = − ib1,i+n1

† b3,i�3,i
z , �18�

and pair-creation operators,

v1,i
2,i = b2,i

† b1,i
† �1,i

y �2,i
x , �19�

v2,i
3,i = b3,i

† b2,i
† �2,i

y �3,i
x , �20�

v3,i
1,i = b1,i

† b3,i
† �3,i

y �1,i
x , �21�

v1,i+n1

2,i+n2 = ib2,i+n2

† b1,i+n1

† �1,i+n1

z , �22�

v2,i+n2

3,i = ib3,i
† b2,i+n2

† �2,i+n2

z , �23�

v3,i
1,i+n1 = ib1,i+n1

† b3,i
† �3,i

z . �24�

Now, each site is encoded by a cell index i and its position
inside the cell which takes three values k=1,2 ,3 as shown in
Fig. 2. Within this formalism, the plaquette operators read

W� = �
i��

�i
z, W� = �− 1��i��bi

†bi �
i��

�i
z �25�

for triangles and

W
˝

= �− 1�b2,i
† b2,i+b1,i−n2

† b1,i−n2
+b3,i−n1

† b3,i−n1 �
i�˝

�i
y �26�

for the dodecagonal plaquette �which are hexagonal in the
effective lattice� located below the cell i �see notations in
Fig. 2�.

The main interest of this mapping is that the form of
Hamiltonian �10� is especially adapted to the perturbative
treatment developed in Sec. III B. Indeed, a key ingredient of
our approach which is based on the continuous unitary
transformations21 together with the particle-number conserv-
ing generator22–24 is that the energy spectrum of the unper-
turbed Hamiltonian has to be equidistant.

B. Perturbative analysis of the low-energy sector

In this section, we used exactly the same method as those
described in Refs. 12 and 25 for the Kitaev honeycomb
model. Therefore, we skipped all technical details and only
give here the results of our calculations.

FIG. 2. �Color online� Effective kagome lattice obtained from
the triangle-honeycomb lattice by replacing each dimer linking tri-
angles by a site. We displayed in gray the “dual” honeycomb lattice
on which the toric code is defined �see text�.

PERTURBATIVE STUDY OF THE KITAEV MODEL WITH… PHYSICAL REVIEW B 78, 125102 �2008�

125102-3



First, let us note that, in the triangle-honeycomb lattice,
one has

Ns = 3Nt = 6Nd = 2N , �27�

where N is the number of cyan dimers and s, t, and d stand,
respectively, for sites, triangles �so Nt=N�+N��, and
dodecagons �or effective hexagons, so Nd=N

˝

�. There are
thus as many conserved Z2 plaquette operators Nt+Nd as the
number N of effective spin 1/2. This implies that in the low-
energy subspace with no hardcore boson, the effective
Hamiltonian can, in the isolated-dimer limit J��J, be writ-
ten only in terms of the plaquette operators and is thus
readily solved. The general form of this effective Hamil-
tonian reads

Heff
�0� = E0 − �

p1,. . .,pn

Cp1,. . .,pn
Wp1

Wp2
¯ Wpn

, �28�

where p1 , . . . , pn denotes a set of n plaquettes.
We performed this perturbative expansion of the effective

Hamiltonian up to order 8 which is the lowest order involv-
ing multiplaquette interactions. At this order, the constant
term is given by

E0

N
= −

1

2
− J2 −

1

4
J4 −

1

8
J6 +

15

64
J8. �29�

The first nontrivial contribution arises at order 6 where only
hexagonal-plaquette operators are involved. At order 8, this
latter term is renormalized and triangular-plaquette operators
come into play. More precisely, one has

Heff
�0� = E0 − Ch�

h

Wh − Ch,t1,t2 �
h,t1,t2

WhWt1
Wt2

, �30�

where the first sum is performed over all hexagonal
plaquettes h �i.e., ˝� and the second one over triplet
plaquettes made of one hexagon h and two triangles t1 and t2
�of any kind � or �� adjacent to this hexagon. At order 8,
the coefficients are given by

Ch =
63

8
J6 −

297

8
J8, Ch,t1,t2

=
33

16
J8. �31�

Thus, at order 6, the spectrum does not depend on the
fluxes inside the triangles and this degeneracy is only par-
tially lifted at order 8. Note that the signs of Ch and Ch,t1,t2
confirm, in this limit, that �one of� the ground state lies in the
vortex-free sector �wp= +1 for all plaquettes� as conjectured
in Ref. 18. In addition, we emphasize that triangular-
plaquette operators appear by pairs which are reminiscent
from the time-reversal symmetry that the effective Hamil-
tonian must satisfy �see Sec. II�.

It is interesting to interpret this result in terms of
plaquettes and vertex operators. Therefore, one may view the
effective kagome lattice as a honeycomb lattice where each
site lies in the middle of the triangles as shown in Fig. 2.
Within this picture, the plaquette operators W

˝

are inter-
preted as flux �magnetic� operators, whereas W�,� appear as
vertex �electric� operators. In this gauge theory language
used in the toric-code model,6 our results show that, at low-
est order, there is no contribution of the vertex operators.

Thus, the triangle-honeycomb lattice in this isolated-dimer
limit does not map onto a standard toric-code-like problem.
However, the eigenstates of the effective Hamiltonian are
those of the toric code on the hexagonal lattice and, as such,
display anyonic statistics. To be more precise, one must dis-
tinguish between electric and magnetic excitations which are
localized on triangles and hexagons �in the kagome lattice�,
respectively. These two kinds of excitations have mutual
semionic statistics6,18 but they individually behave as bosons.
Finally, let us remark that the gaps of magnetic excitations
�order of magnitude J6� and of electric excitations �order of
magnitude J8� are even smaller than the gap in the Kitaev
honeycomb model �order of magnitude J4�. This would make
an experimental detection of anyons in the triangle-
honeycomb model even more problematic than in the honey-
comb model.13

C. Correlation functions in the low-energy sector

As in the Kitaev honeycomb model, any correlator in-
volving an odd number of spin operators vanishes although
the eigenstates break the time-reversal symmetry. Indeed, as
discussed by Yao and Kivelson,18 every eigenstate is, at least,
twofold degenerate since one can flip every triangular
plaquette without changing the energy but this operation is
global. Consequently, as in the honeycomb model,15,26 the
only nonvanishing correlators are products of �i

�� j
� on an �

dimers. Here, we focus on the simplest case involving only
one such object, i.e., Ci,j

��= �i
�� j

��.
In the triangle-honeycomb model, one has, a priori, nine

different functions to consider since the unit cell contains
nine different dimers. However, with the choice of the cou-
plings we made, one only has two different functions to dis-
tinguish: those on “weak” bonds �x ,y ,z links with interaction
J� and those on “strong” bonds �x� ,y� ,z� links with interac-
tion J��. As for the low-energy spectrum, one expects a
plaquette-operator expansion as in Eq. �28�. We performed
the calculation of these two correlation functions up to order
6 and obtained

Ci,j
strong = 1 − 2J2 −

3

2
J4 −

5

4
J6 −

105

8
J6�Wp1

+ Wp2
� , �32�

where p1 and p2 are the two dodecagonal plaquettes shared
by the considered strong bond �i , j�. Similarly, since we set
Jx=Jy, we found for a weak bond �i , j�

Ci,j
weak = J +

1

2
J3 +

3

8
J5 +

63

8
J5Wp, �33�

where p is the dodecagonal plaquette adjacent to the consid-
ered bond.

As can be seen from Eqs. �32� and �33�, the presence of a
vortex is detected at orders 6 and 5, respectively. This differ-
ence stems from the fact that one analyzes the isolated-dimer
limit for which, at lowest order, Ci,j

strong=1 whereas Ci,j
weak=0.

D. Checks from Majorana fermions

To check our results we computed exactly the ground-
state energy in the vortex-free �full� sector for which wp=

DUSUEL et al. PHYSICAL REVIEW B 78, 125102 �2008�

125102-4



+1 �−1� for all p using Majorana fermions as described by
Kitaev for the honeycomb model.7 Following, the procedure
described in Ref. 25, we performed a perturbative expansion
of the exact solutions order by order. Denoting e0

	 the
ground-state energy per cyan dimer for a vortex filling factor
	= No. of vortex

No. of plaquette one gets

e0
	=0 = − J� −

J2

2J�
−

J4

32J�3 −
11J6

128J�5 +
147J8

8192J�7 , �34�

e0
	=1 = − J� −

J2

2J�
−

J4

32J�3 +
5J6

64J�5 −
117J8

8192J�7 . �35�

Keeping in mind that the number of hexagons is N /3 and
that for each hexagon h there are 15 triplets h , t1 , t2, these
results are straightforwardly recovered using Eqs. �29�–�31�.

One can also check the expression of the correlation func-
tions in these vortex configurations. Indeed, the Hellmann-
Feynman theorem states that

�e0
	

�J�
= −

1

N
�
�i,j�

Ci,j
strong = − Ci,j

strong, �36�

�e0
	

�J
= −

1

N
�
�i,j�

Ci,j
weak = − 2Ci,j

weak, �37�

where the sum in Eq. �36� �Eq. �37�� is performed over all
strong bonds �weak bonds� in the initial lattice. The last
equalities stem from the fact that for 	=0,1 every plaquette
has the same contribution which would not be true for other
vortex configurations. Using Eqs. �34� and �35� and the
above relations, one can easily check the validity of Eqs.
�32� and �33�.

IV. ISOLATED-TRIANGLE LIMIT

A. Mapping to a spin-boson plaquette problem

Let us now turn to the isolated-triangle limit J�J�. These
triangles live on the sites of an effective hexagonal lattice.
For convenience, we use rotated form �5� that was already
used in the isolated-dimer limit. The spectrum of the Hamil-
tonian of an isolated triangle is made of two sets of fourfold-
degenerate levels. In each of these sets, two levels have
eigenvalue wt=1 and the other two wt=−1. Setting J= 1

2�3
,

the eigenenergies are �1 /2. This information is gathered in
Fig. 3.

As in the isolated-dimer limit, we interpret low �high�
energy states of an isolated triangle as containing zero �one�
hardcore boson. This hardcore boson degree of freedom,
which we again denote as b, together with the Z2 quantum
number wt span a four-dimensional Hilbert space. It is then
natural to introduce an effective spin 1/2 to span the full
eight-dimensional Hilbert space of a triangle. We again de-
note this effective spin as � �though it is not the same as in
the other perturbative limit, and the same remark holds for
b�. The way this effective spin is introduced is partly dictated
by the operators involved in the adjacent dodecagonal-
plaquette operators. For the triangle 1,2,3 of Fig. 1 �and
dropping the i index�, the mapping reads

�x = Wt�̃2
x�̃3

y, �y = Wt�̃3
x�̃1

y, �z = − Wt�̃1
x�̃2

y . �38�

It is straightforward to check that the above �� operators
satisfy the usual Pauli matrix algebra. The product �̃2

x�̃3
y ap-

pearing in �x, for example, is the same as the one that ap-
pears in the dodecagonal-plaquette operator having bond 2,3
in common with the triangle. It is interesting to note that one
has to use the operator Wt= �̃1

z �̃2
z �̃3

z to fulfill the SU�2� alge-
bra. The same mapping is used for the other triangles, with
1,2,3 simply replaced by 4,5,6 �see Fig. 1 for notations�.

Since the terms proportional to J in Eq. �5� now read
−Nt /2+Q, with Q=�ibi

†bi where the sum runs over the sites
i of the effective hexagonal lattice �formed by triangles�, the
last task in rewriting Hamiltonian �5� is to find the new form
of the terms proportional to J�. A simple but lengthy calcu-
lation yields

H = − Nt/2 + Q −
J�

3 �
�=x,y,z

�
� links

Oi
�Oj

�, �39�

where � indicates a link of type x, y, or z on the honeycomb
or equivalently brickwall lattice, with the conventions of
Kitaev,7 as shown in Fig. 4. Furthermore i and j are the sites

1/2

−1/2

wt = 1 wt = −1

E

FIG. 3. �Color online� Spectrum of an isolated triangle with J
= 1

2�3
. The eigenstates have quantum number wt=1 �left� or wt=−1

�right�.

σz
i

σx
k

Wt,jσ
y
j

n2 n1

x

z

y

FIG. 4. �Color online� A piece of the effective brickwall lattice
spanned by triangles, together with the notations for x, y, and z links
�left�. Filled �empty� dots represent the triangles made of filled
�empty� dots in Fig. 1. On the right, we have represented one of the
second-order three-spin terms that appear in Eq. �48�.
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of the effective brickwall lattice on link �, and the operators
Oi

� read �Wt,i denotes the triangular-plaquette operator which
is now associated to site i�

Oi
� = �i

�	�− 1�bi
†bi − �2Wt,i�e�2i
/3�p�Wt,ibi

† + H.c.�
 , �40�

where px=1, py =−1, and pz=0.

B. Perturbation analysis of the low-energy sector

From the above expressions, it is clear that the Hamil-
tonian can now be written

H = −
Nt

2
+ Q + T0 + T+1 + T−1 + T+2 + T−2, �41�

where the operators Tn change the number of bosons by n
and are proportional to J�. With our notations, they read

Tn = −
J�

3 �
�=x,y,z

�
� links

�i
��j

�Tn,i,j
� , �42�

with

T0,i,j
� = �− 1�bi

†bi+bj
†bj + 2Wt,iWt,j�e�2i
/3�p��Wt,i−Wt,j�bi

†bj + H.c.� ,

�43�

T1,i,j
� = − �2�Wt,ie

�2i
/3�p�Wt,ibi
†�− 1�bj

†bj + �i ↔ j�� , �44�

T2,i,j
� = 2Wt,iWt,je

�2i
/3�p��Wt,i+Wt,j�bi
†bj

†, �45�

T−1 = T1
†, T−2 = T2

†. �46�

As in the isolated-dimer limit �where T�1 terms are ab-
sent�, with a suitable unitary transformation, such a Hamil-
tonian can be recasted in a unitary equivalent effective form
Heff which conserves the number of bosons, i.e., that com-
mutes with Q. We refer the reader to Ref. 24 �especially
Appendix B�, from which it follows that at order 2,

Heff = −
Nt

2
+ Q + T0 + �T+1,T−1� +

1

2
�T+2,T−2� . �47�

A tedious calculation then shows that in the low-energy
subspace with no boson, the effective Hamiltonian �still at
order 2� has the form

Heff
�0� = −

Nt

2
�1 + 2J�2� −

J�

3 �
�

�
� links

�i
��j

�

+
2�3J�2

9 �
i,j,k

Wt,j�i
��j

��k
�. �48�

The low-energy effective Hamiltonian at order 1 is nothing
but that of the Kitaev honeycomb model at the isotropic
point, though one should remember that site i now also has
the Z2 supplementary degree of freedom Wt,i. In Eq. �48�, the

last �primed� sum is to be taken over all possible combina-
tions of three sites i, j, and k such that i and k are nearest
neighbors of j and the spin “directions” �, �, and � are such
that �i , j� is an � link, �j ,k� is a � link, and � is the outgoing
direction at site j of the path �i , j ,k� �note that �, �, and � are
all distinct�. For clarity, one such term is illustrated in Fig. 4
�right�. These terms, apart from the plaquette operator Wt,j,
are exactly the ones that arise when switching a magnetic
field on in the gapless phase of the Kitaev honeycomb
model. They open a gap and give proper non-Abelian
anyonic statistics to the vortices, as detailed in Ref. 7. Actu-
ally, one does not know how to diagonalize analytically Heff

�0�

for arbitrary vortex configurations even at order 17 and, in
particular, how to obtain the ground state of each sector.
Therefore, contrary to the isolated-dimer limit, one cannot
compute the correlation functions in this limit.

Let us remark that the plaquette operators on an elemen-
tary brick �or hexagon� h—namely, Wh=�i�h�i

out�i�—are the
product of the plaquette operators of the corresponding
dodecagon on the original lattice and of its adjacent tri-
angles, as follows from Eq. �38�. From Eq. �48� and the
previous remarks, it follows that the vortex-free sector con-
tains non-Abelian anyons, which is consistent with the find-
ings of Ref. 18. One can also use Kitaev’s result �see Sec. 8
of Ref. 7� to obtain the gap in this sector,

� = 6�3 
2�3J�2

9
= 4J�2, �49�

in units where J= 1
2�3

and thus also �= 2�3J�2

3J if J is chosen
freely. This value of the gap is consistent with the numerical
results obtained by Yao and Kivelson,18 and we also checked
it using an expansion of the exact result from Majorana fer-
mionization. We also checked that the ground-state energies
in the vortex-free sector obtained, thanks to a Majorana fer-
mionization of Hamiltonian �48� or directly of initial Hamil-
tonian �1�, match at order 2.

Finally, let us mention that at order 1, the ground states of
Eq. �48� are such that Wh=1 for all h. There are many such
states. The vortex-free state is such a state, but any configu-
ration where the six triangles surrounding one dodecagon are
flipped to Wt=−1 is also such a state, since every dodecagon
is then surrounded by an even number of flipped triangles.
From form �48� at order 2, we do not know how to prove that
the ground state is the vortex-free state �we do not even
know if this is true or if one has to go to higher orders in
perturbation to prove it�. We leave this as an open question.

V. CONCLUSION

In this work, we have studied perturbatively the Kitaev
model on the triangle-honeycomb model. This has allowed
us to show that in the isolated-dimer limit, the model has
low-energy Abelian anyonic excitations, whereas in the
isolated-triangle limit, the anyons become non-Abelian. This
picture is consistent with the values of the Chern number in
each of these phases.18 In the isolated-dimer limit, we have
furthermore computed the low-energy spectrum as well as
the spin-spin correlation functions, which both display a
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plaquette expansion. We emphasize that such a computation
is not an easy task within the Majorana or Jordan-Wigner
formalism, which are only well suited to study analytically
configurations of vortices which display translational invari-
ance.
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